
AD-757 367

ON THE POWER OF PROGRAMMING FEATURES

Ashok K. Chandra, et al

Stanford University

Pre pared for:

Advanced Research Projects Agency
National Aeronautics and Space Agency

Janu ary 197 3

DISTRIBUTED BY:

urn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

-

- ^_t^^Mta

STANFORD ARTIFICIAL INTELLIGENCE
MEMO AIM-185

STAN-CS-73-333

CO

Q

ON THE POWER OF PROGRAMMING FEATURES

BY

ASHOK K. CHANDRA

ZOHAR MANNA
Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Departmen* of Commorc«
Sprinofield VA 22151

SUPPORTED BY

NASA CONTRACT NSR 05-020-500

AND

ADVANCED RESEARCH PROJECTS AGENCY

AR PA ORDER NO. 457

JANUARY 1973

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

gcsrc ...
E

(Iftn, .

\di&töDl'

?l

■ tmm^m*

r •^^^

Unclassified
StTimty Classification

DOCUMENT CONTROL DATA - R 4 D
Srcnty das-..hcenon of llllo. body of «b^rarr and indexing nnnol, lion MMM be enfered when llw ovetall repgrl I* rfas.tiled)

OWiGiN»riNG »CTIVITV (Corporate author)

Stanford University
Computer Science Department
Stanford, California 9^50$

I REPORT TITLE

2«. REPORT SECURITY CLASSIFICATION

 Unclassified
2b. GROUP

On the Power of Programming Features

4 DESCRIPTIVE NOTES (Type ol report and inclusive dales)

technical
S AU THORISI (First name, middle initial, last name)

Ashok K. Chandra and Zohar Manna

6 REPOR T DATE

January 1973
Ba. CONTRACT OR GRANT NO

SB-IBS
b. PHOJEC T NO.

05-020-500 (NASA)

10 DISTRI BUTION ST ATEMENT

7«. TOTAL NO. OF PAGES

29
7b. NO. OF REFS

11
9a. ORIGINATOR'S REPORT NUMBERIS)

STAN-CS-73-333

9b. OTHER REPORT NO(Sl (Any other numbers that may be asslened
tnta report)

Distribution Unlimited.

It. SUPPLEMENTARY NOTES

13 ABSTRAC T

12. SPONSORING MILI TARY ACTIVITY

We consider the power of several programming features, such as counters, pushdown
stacks, queues, arrays, recursion and equality. In this study program schemas are
used as the model for computation. The relations between ehe powers of these feature
is completely described by a comparison diagram.

DD FORM 147*^ <PAGE ') 1 NO V «5 I *T / J

S/N 0101.807.6801
Unclassified

Security CI issification

-

■
A

■

ti^mmim^KmM

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-I85

COMPUTER SCIENCE DEPARTMENT
REPORT STAN-CG-73-333

January I973

ON THE POWER OF PROGRAMMING FEATURES

by

Ashok K. Chandra

Zohar Manna

ABSTRACT: We consider the power of several programming features such
as counters, nushdown stacks, queues, arrays, recursion and
equality. In this study program Schemas are used as the model
for computation. The relations between the powers of these
features is completely described by a comparison diagram.

This research was supported in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense under Contract No.
SD-I85, and by NASA contract NSR 05-020-500.

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policied, either expressed or implied, of the Advanced Research
Projects Agency or the U.S. Government.

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.

. /

■ ■ * - — ^

•^^

Introduction

Ir. this paper we consider the problem of comparing the power of

several features used in programming languages. For example, it is

intuitively obvious to any programmer that recursion cannot, in general,

be replaced by iteration with variables alone, but recursion can always

be replaced by a pushdown stack. This indicates that a pushdown stack

is at least as powerful as recursion, and that recursion is more powerful

than iteration. Thus, from the iteration-vs-recursion standpoint we

would say that ALGOL and PL/l are more powerful than FORTRM. The

question is whether an intuitive notion of this kind can be understood

in a formal way, and possibly elaborated upon to obtain a better under-

standing of programming features and to enable us to compare their power.

Unfortunately, the problem is not so simple. Consider, for example,

the programming language of flowcharts, which contain ideal integer

variables, i.e., their values can be arbitrarily large. The operations

allowed in the flowchart are incrementing and decrementing variables by

one, and testing to see if the value of a variable is zero. Such a

simple language with just three variables can calculate all the "computable"

functions, that is, all the partial recursive functions over the natural

numbers. Thus if we add recursion or a pushdown stack to such a language,

the power of the language will not be increased.

This suggests that in order to carry out such a study, we must

isolate in some way the effect of the programming features, whose power

we wish to compare1, from the values being computed by the program. For

this purpose we consider for each programming language a class of program

Schemas; a program schema may use the control features of the language

*—mfm*Km*

•^■^

but the basic operations (constants, functions, and predicates) are

used only as symbols without being specified.

Related work has been done previously, among others, by Paterson and

Hewitt [1970], Garland and Luckham [1971]^ Constable and Gries [1972],

Plaisted [I972] and Chandra and Manna [1972]. The classes of schemas

considered in these papers arc not identical to ours, but the differences

are not significant. Details of the results presented in this paper

can be found in Chandra's thesis [1975].

Part I. The Class of Program Schemas

A program schema is a program in which the data domain is not

specified. In addition, the constants are indicated simply by the

symbols a^a^ ... , the functions by f.,f , ... , and the predicates

by Px'Pg' •' • Thus a PrograjTi schema may be thought of as representing

a family of real programs. A real program of the family is obtained by

providing an interpretation for the symbols of the program schema, i.e.,

specifying a data domain and specifying data elements, function:; and

predicates over the domain for the symbols a. , f. and p. , respectively.

In our program schemas we use two kinds of variables: data

variables, deno. 3d by y^y-,... , and boolean variables, denoted by

w Boolean variables can have value either true or false.

Data variables, on the other hand, have values from the data domain

that is specified along with an interpretation for the schema. Corres-

pondingly, we distinguish between two types of terms: data terms and

boolean terms. A data term T can be built up using the data variables

y. of the schema and the individual constants a. , and applying the

.

- --

•

mmk

9 V

function symbols f. to them. The value of a data tem for a given

interpretation is always a data element. A boolean term a is an

atomic fomula or a negated atomic formula, where an atomic formula

is a boolean value (true or false), a boolean variable 2 , or a
i

predicate test of the form DI'T n- ,\ TT -. wie torra p^, ...,Tk) . Under any interpretation,

the value of a is a boolean value, true or false .

1- Simple Algol-like Schemas

The first class of schemas we consider is the class of Algol-like

Schemas which can be constructed from statements of the following form

(we use standard Algol-like notations):

(i) start statement

(ii) halt statement

(iii) loop statement

START(a)

HALT(T)

LOOP

(iv) assignment statementB y. - T

or z. - cc
i

(v) test statement if a then goto L, else goto L

1^ and L2 here are labels. In addition we may use begin ... end

for grouping statements.

_i * ■ '- ■ * J

The start statement, START(a) , initializes ail data variublec y,

to the value a and all boolean variables to true . The halt statement,

HALT(T) , outputs the data value of the term T . The loop statement,

LOOP , causes the schema to loop forever.

We use C() to denote the class of all simple Algol-like Schemas.

2- Aupaented Algol-like Schemas

We will also consider Algol-like Schemas augmented with features

designed to make the Schemas more powerful.

(a) Counters

A counter is a variable whose value is always a non-negative; integer.

Counter;- are denoted by c^c,,,... . All counters used by a schema are

initialized to zero by the start statement. The statements allowed

on an arbitrary counter c are:

(1) c - c+1

(2) if c =0 then goto L. else begin c - c-1; goto Lr end.

We use e(c) to denote the clas. of Algol-like Schemas with

counters (it includes the subclass of Schemas with no counters),

^(Ic) to denote the class of Schemas with at most 1 counter, and

(3(2c) to denote the class with at most 2 counters.

(b) Pushdown Stack

A pushdown stack is a last-in first-out store in which a pair of

values of both types (data, boolean) can be stacked. Pishdown stacks

are denoted by s^Sg, All pushdown stacks used by a schema are

initialized to be empty by the staro statement. A schema with a stack

_*■ mA - ^m^ä ÜHk «Hk^

p ■•

I

can "push" a data value and a boolean value into the stack, and it

can "pop" them (if the stack is non-empty).

The statements allowed on an arbitrary pushdown stack s are:

(1) push(s,y,z)

(2) if s = A then goto L

else begin £OE(s,y,z)j goto L2 end .

Here, y denotes an arbitrary data variable, z a boolean variable,

and A the empty stack. The statement " £us_h(s,y,z) " adds the current

values of the variables y,2 on top of the stack s. The statement

" P0£(s,y,z) " does the opposite: the one data and one boolean value

at the top of the stack s are assigned to the variables y and z ,

respectively, and these two values are removed (popped) from the stack.

We use ^(s) to denote the class of Algol-like Schemas with

pushdown stacks, and similarly for (3(ls) and (3(28)

(c) Queues

A queue is a first-in first-out store. Queues are denoted by

q1.q2,... . All queues used by a schema are initialized to be empty

by the start statement. A schema with a queue can "add" values at one

end, and "remove" them from the other. The statements allowed on an

arbitrary queue q are:

(1) add(q,y,z)

(2) if q = A then goto L

else begin removefq.y.z): goto T,^ pnri .

The statement " add(q,y,z) " adds the current values of the triable;

y,z at one end of the queue. The statement " remove(q)y,z) " does the

m

• * f ■

■

following: the one data and one boolean value at the end of the queue

are assigned to the variables y and z , respectively, and these two

values are removed from the queue.

We use C<q) to denote the class of Algol-like Schemas with queues.

(d) Arrays

An array is a serai-infinite sequence of "locations" (numbered

0,1,2,...), each of whicn can take on a pair of values: one data value

and one boolean value. Arrays are denoted by A ,A^,... . Tue start

statement, START(a) , initializes all locations in arrays to the data

value a and the boolean value true . A location can be accessed by

subscripting the array with a counter. The statements allowed on an

arbitrary array A are:

(1) A[c] - (y,z)

(2) (y,z) -A[c] .

We use C.(A) to denote the class of scheraas with arrays. Note

that the use of an array implies the use of counters, that is, Schemas

in (3(A) do have an arbitraxy number of counters.

The class of Algol-like Schemas with any or all these features

(counters, stacks, queues, arrays) is denoted by C{s,q,A) .

3. Recursive Schemas

A recursive schema consists of a set of recursive definitions of

the following form:

F1(a,a, .. .,truF.,true, ...) where

h^l'h^ <= if^ty^VF) thenT1(y1,z1,F) else T'Cy^z ,F)

^-* — ' ^ I I ■■ ^ " ■ i! mrii

where y. represents a vector of data variables, I. a vector of boolnun

variables, and V = (F^ .. .,1^) is a vector or "defined llinction;;".

Each defined Inunction 1^ may take both data values and boolean values

as arguments but, for simplicity, we assume that it always returns just

one data value. ^(y.^.J) is a boolean term and T.(y.,i.,F) and

Ti^yi,Zi'F^ are data terms that may use the variables in y. and z. , and

the defined functions F along with the constant Bymbola a ,a ,... , the

function symbols f^f^,... , and the predicate symbols p ,p ,... .

The value of the schema for any given interpretation is the value

of F1 with all its data arguments set to the value of the individual

constant a , and all its boolean arguments set to true. During

computation, all arguments are passed by value, i.e., the innermost

function nails are evaluated first. Note that there are no "global"

variables, and function calls cannot have any side effects, they simply

return values.

tfc- use C'(R) to denote the class of all recursive Schemas.

h. Equality

We also consider schemas in which every boolean term a may have

the form ^ = Tg or -x 1 / i^ in addition to the earlier possibilities.

When equality is allowed in a class (3{...) , we denote the

augmented class by C<...,=) . Thus, we use (3(=) to denote the class

of Algol-like schemas with equality, C.(c,=) to denote the class of

Algol-like schemas with counters and equality, C<R,=) to denote the

class of recursive schemas with equality, etc.

8

•

• — ■ • Mt

5- Example

Any two Schemas S and S' are said to be equivalent if for every

/ interpretation of G and G ,-' either both tchetnas diverge (i.e.,

loop forever), or both halt with the same output.

Consider the following recursive schema

S0: F(a) where

F(y) <= if p(y) then y else t{¥Mg{v))) .

Note that if we have an interpretaticn of t50 for which

p(g (a)) ■ true for come n > 0 , and

P(ß:i(a)) - false for all i < n ,

then

P(a) = f(a,f(g(a),f(r2(a),...,f(gn-1(a),gn(a))...))) ■

Below we exhibit some Algol-like schemas thet aic equivalent to Sn .

To simplify the programs wa use an extended Algol-liKe language, using

. . .r'^lar while ... do ... statements, goto statements and if ... then ... else

statements. All these statements can be expressed easily in terms of

our primitive statements. We allow also the statement c - c. which

can be replaced by 3egal statements for counters by adding one additional

counter.

For clarity, we add a few comments in the schemas below. Gince

boolean variables play no role ir this example, we ignore their presence

in the comments.

*7 "
-' i.e., the interpretation includes an assignment to all constant,

function und predicate symbols occurring in G or in o' .

^■M^^MMte^i mM

(a) A ample echana

G1: CTAi?r(a);

while -« vb'i) do yj^ - eiyj);

[comment: y = g
n(a)}

L: 11 P(yit) then HALTfr.)

else begin y2 - ft; y^ ^ g(yu); y^ - y^ end;

{.ccmment: in the 1-th loop (1 < i < n)

y2 = R (a), y3 = g
i(a), y|(= g

i(a)]

while -" PCyj) ^2 begin y2 - 6(y2); y. - g(y^) end;

(comment: in the i-ch loop (1 < 1 < n)

y2 = Ö
ri"1(ft), y^ = gn(a), y^ .. g^a)}

y1 - fCyg^i);

goto L .

(b) A schema with counters

S2: START(a);

wh±le "■ PCy^ §£ be^g y1 - g(y:); c^^ - c.+l end;

[comment: y1 = gn(a), c1 . n]

L: i£ Cj^ = 0 then IIAI/^y)

eli^e begin y2 - a; c} - Cj-1; e •- ,.■ pn,|;

while c2 / 0 do begin y2 - g(y2) ; c2 - c,,-! end;

[comment: in the i-th loop (1 < i < n)

yg = e ' (a)» Ci - n-lj

y1 - f(y2*y]L);

goto L .

]/)

^amM

(c) A schema with a pashdnwn stack

.%: STARr(a);

while n p(y1) do begin Qushicy^y.) ; yi ^ tfyj emi;

icomment: y1=gn(a), B » (a,g(a), .. .^^(a)))

L: if s = A then UALT^) else Bppfe.y^.z)!

[comment: in the i-th loop (1 < i < n)

y2»gn" (a), 8 (a,,:(a),...,/:
I1-:i'J-f,.J.))]

goto I, .

(d) A schema with an array

C^: STAKr(a);

^hile -, pCy^ do be^in A[c J - (y^z); c - c+lj ^ - g(y1) end;

{comment: y1 = gn(a), A[0] -a, A(l]-g(a), ...

AU-lJ-jrta), c = n}

L: if c - 0 then HALTCy,)

else be^n c - c-1; (y2,2) - A|c| end;

(comment: In the i-th loop (1 < i < n)

yi *" 1'(y2,yi^;

goto L .

11

 — ■» -a i ^ i I ■ ■ ■< ^M^B^Hi

(e) A schema with equality

S : START(a);

while -, p(y1) do y1 - s(y1);

Yo *- Yi ;

{comment: y^^ = y2 = g
n(a) }

L: if y2 = a then HALTCy^ else y, - a;

while g(y5) / y2 d£ y3 - g(y) ;

Yo - y-^ >

[comment: in the i-th loop (1 < i < n)

n-i.
yp = y. - g (a)}

yl " f(y2'yi)5

goto L

Part II. On the Power of Classes of Schemas

Let C^ and fl, be two classes of Schemas. We say that

(a) C^ is more powerful than q. (notation: Cs >(^2) if for every

schema in Ü. there is an equivalent schema in (L ,
1

(b) C^ and g-g are equally powerfiQ. (notation: (L 5 fl^) if

C^ > C^ and C^ > CJ», , and

(c) C^ is strictly more powerful than O (notation: C». > CH) J

if C^ > C.2 but OifiCtQ •

1. The Comparison Diagram

We now consider tne interrelations between the classes of schemas

we have defined.

12

^M^M

Intuitively, anything thai can be done jteraLively can also be

done recursively. In other words, we would expect that C-(R) >(3,() , and

C3-(R, =) >(•(=) . That these are indeed true was shown by McCarthy [I962].

Also, as mentioned earlier, one expects that recursion is strictly more

powerful than iteration. Paterson and Hewitt [1970] showed that there

are certain recursive Schemas for which there are no equivalent simple

Algol-like Schemas, i.e., (^(R) >C-() , and also C3<R>=) > ^{-) •

Another intuitive notion is that recursion can always be replaced

by a pushdown stack. Thus, if our Schemas in c-(R) and C.(ls) do

capture the intuitive power of recursion and of a pushdown stack, wo

would expect that C.(R) < c-(ls) , and similarly, (^(R,-) <C.(ls,-) . Those

were shown to be true by Hewitt [1970 | and by Constable and Gries [1972]. One

should also ask whether a pushdown stack has power strictly greater than

recursion, or whether they are equally powerful. To state this in

another way. we observe that recursion involves the use of an implicit

stacking mechanism. The question is whether or not this implicit stack

really utilizes the full power of a pushdown stack. Chandra [1975]

answered this by showing that C-(R) - C-Cls) , and that ö(R,=) sC^ls,^ .^

Paterson |unpublished memorandum | and Garland and Luckham [1971] showed

that e.(c) > die) . Plaisted |1')7''| proved the curpricinß result that the

addition of just one counter to simple Algol-like Schemas adds no power,

i.e., (3(lc) s (3() . However, the addition of a second counter adds

power, i.e., C-(2c) >(3<lc) ; and after that, the addition of a third,

fourth, fifth counter, etc., does not increase the power.

It can be shown that the power of recursive Schemas is not affected
by the addition of features such as: (a) recursive definitions
which consist of simple Algol-like programs with global variables
and local variables as well as recursive calls, or (b) defined
functions which return not just one data value, but a vector of data
and boolean values.

13

i

^m^ä riMMM

Constable and Gries [1972] introduced. Schemas with arrays and

used a problem suggested by Paterson and Hewitt to show that C,(A) > ;3(R)

Chandra and Manna [19J2] observed that the use of equality increases the

power of Schemas.

The interrelationships between the various classes of Schemas is

shown in Figure 1. In the figure (and all following figures), if there

is an ascending arc (or a chain of such arcs) leading from a class (L

to a class ^ , and Cg is above & in the figure, it means that

" a, is a strictly more powerful class than fl. "• If two classes,

Cj and Cj, , are not linked by an accending chain of arcs, then the

classes are unrelated, i.o., C^fcC*, and Öp £ C^ . For example,

(3(=) ^C'(A) , and e.(A) ^ C<=) . In other words, there is at least

one schema in fl,(=) for which there is no equivalent schema in (3(A) ,

and vice versa. Details of all the results suggested by Figure 1 can

be found in Chandra's thesis [1975].

From Figure 1 it is apparent that Schemas with arrays and equality

act as a "maximal" class. In fact, any arbitrary schema with

equality, counters, stacks, queues and arrays can be effectively

translated into an equivalent schema witli equality and one army.

Also, one pushdown stack has the same power as recursion, but two utaekü

are strictly more powerful -- they are together as powerful as arrays.

Even the seemingly "weaker" class with one pushdown stack and one counter

has the same power as arrays. Observe that a queue is a more powerful

feature than a stack; actually, a queue is as powerful as two stacks

(addition of more stacks or queues adds no power) .

Ik

- ^Ml^^Ml

-^m

C-(A,=)

e(c,=)

ö(c)

(3.(R,=)

I

cO =- e(lc)

C(c) = C(2c)

e(R) = C{lv.)

r;.(A) •'.(.k-,,l<;) (3(:J£l) C(lq) <'-(.l/\) ^ "•(:■,< l,Aj

.•im! . Jim: laf.l.v. when wc ■ MM. iMiua. 1 ;i t,;/ Lo micli n l.ai'.i'

C(-) s C(lc,=)

C(c,= 0 3 C(2c,=)

^(R,= 0 s C(ls,=)

C(A,= 0 s e(ls,lc,=) = (3(2s,--) s C(lq,=) = C(M,=) s C(.s,q,A,=)

Figure 1

b

^ ■ ■ i ■ i i i i ■ o^^^MÜ

r^
It Is InLcreüiitu; bo Luhcl, Mio vrl,.!.-,.; of Ki,-ii.:n- l IT. anoLlicr way,

as shown in Figure 2. (Note that Figures .1 and 2 are isomorphic; that,

is, they represent the same relationships). This figure fan be treated

as a unit cube where the axes are labeled:

x-axis: "add a stack and delete .. counter",

y-axis: "add a counter", and

z-axis: "add equality tests".

ö(lB,lC,=)

C(.lc,)

0(18)

2. Some Proofs

To illustrate how the results of Figure 1 are proved, we give an

intuitive idea of the proofs for the results indicated in Figure J.

16

-■ -
tia^^^tmk

■^■i

(3(A)

(^(c) ö(R)

d)

Figure 5

In the following we use the result that for any classes C-) d-, >

Cj of Schemas, if_ S^ < (32 ^ C* and C3h < (3* then ös < C» • This

follows from the fact that if C^ < Cg £ C-.- then there is a schema S

in Cv for which there is no equivalent schema in Cj, > and hence no

equivalent schema in &, . This implies that Cv ^ C^ • Since C* <C* t

it follows that C--, < C, . Similarly we have that if_ C^ > <3p ^ C-;
^

and g. >(3^ then C*. > C, . Thus, to show that (3(A) > (3(R) >(3() ,

(3(A) >e'(c) >(3() , and that (3(R) and (3(c) are unrelated, it suffices

to prove that (3(A) > C-(R) ><3() , (3(A) > (3(c) >(3() , and that (3(R)

and (3(c) are iinrelated, i.e., (j(R) ^C<C) und (j(R) ^ (3(C) . This

follo\/s because

(3() <e-(c) ^C^R) and (3.() < C-(R) imply C{) < 0(R) ,

ö() <(3(R) ^C(c) and c() < (3(c) imply C{) < C<c) ,

(3(A) > (3(c) ^ (3(R) and (3(R) < (3(A) imply (3(R) < C3(A) , and

C.(A) >(3(R) ^C(c) and C^c) < C<A) imply (j(c) < (3(A) .

It is trivial that (3(A) > (3(c) > GO since every schema in (3()

is in (3(c) , and every schema in (3(c) is in C(A) . We also have

17

■ ^i
. , u

G.(R) >£() cince every simple Algol-like schema can be translated

into an equivalent recursive schema by associating a defined fumction

with each statement in the Algol-like schema. (3(A) > C<R) can be

shown by simulating a pushdown stack with arrays using standard

call-by-value ALGOL compilation (booleans are used to represent the

returr address).

The interesting part is to show that C-(R) and (3(c) are

unrelated, i.e., to exhibit a schema S1 in c(R) for which there

is no equivalent schema in (3(c) , and a schema S in (3(c) for

which there is no equivalent schema in (j(R) .

(a) Consider the following recursive schema (in (J(R)):

S,: F(a) where

F(y) <^ if p(y) then y else f(F(e(y)),F(h(y))) .

There is no schema in C{c) equivalent to this. The reason is that

the computation requires storing an arbitrarily large number of

temporary data values, rfhereas every schema in Q(c) has a fixed

number of data variables.

Consider a class of interpretations [ij having the following

property: for every I , n > 0 ,

(i) distinct terms yield distinct data elements under I , and
n

(ii) p is true only for the terms that contain n occurrences

of the functions g and h applied to a .

The schema S on the interpretation I computes the term T (a) where

T0^') - y i and

T1+1(y) - f(T.(g(y)),T.(h(y))) .

IS

^m*t

For example, S1 under I1 and Ig computec the terms f(g(a),h(a))

and f(f(g(g(a)),h(g(a))),f(g(h(a)),h(h(a)))) , respectively. These

terms can also be represented as binary trees as shown below:

T1(a) : f(g(a),h(a)) is

and

g(a) h(a)

T2(a) f(f(g(«(a)),h(g(a))),f(g(h(a)),h(h(a)))) is

(6(a)) h(g(a)) g(h(a)) h(h(a))

Suppose there is a schema S from 0(c) that is equivalent to S

Without loss of generality we assume that S has no symbols other than

a , f , g , h and p , that the only assignments that use f have the

form yi -
f(yj>yk) j and that halt statement:; have the form HALT(y.) .

Conoider the computation of S under the interpretation I . Since S

is assumed to be equivalent to ü1 it computes the term t (a) which

can be represented as a perfectly balanced binar:/ tree of height n .

Now we consider the computation of arbitrary binary trees in which each

node corresponds to a distinct value and where in a single step at most

one binary function can be applied. It is well known, and can be proved

readily by induction, that the number of variables #(T) required to

10

^M^i mm* mä

compute the term corresponding to such a binary tree T is giver, by

#(0 = 1 , and

= if W{\) =#(Tj) then #(1^+1

else maxWSj),f{1!2))

This tells us that n+1 variables are required for computing the term

T (a)
nv '

For example, three variables are required to compute Tp(a) :

y-L - g(g(tt)) ; y2 - h(g(a)) ; y1 - f(y1,y2) ;

y2 - g(h(a)) ; y, - h(h(a)) ; y2 - f(y2,y5) ;

y-L - f(y1>y2) •

Now, if the schema S has, say, m data variables, then for the

computalion of T under r , S must have at least rrH-1 data r m m

variables — a contradiction. Thus no schema in .3(c) is equivalent

to S. •

(b) Consider the following problem: "given a constant a , unary

functions f,g , and a predicate p , find an element x of the form

f1(gl'(a)) , i,j >0 , such that p(x) is false. If no such x exists

then the schema loops forever". In the following we refer to this

problem as the witch-hunt problem.

It is easy to see that Schemas in (3(c) can solve this problem.

The following is one such schema:

20

-- ^m^

STAKT(a);

Ll: C2 - C1; yl " a;

L2: c3^c2; ^ yl5

while c^ / 0 do begin c - c,-l; y2 - f(y) end;

if -, p(yg) then HALT(y2) ;

if c2 / 0 then begin c - c -1; goto L end;

o1 - c1+l;

goto L,

The idea is that for a given c , c = 0,1,^, .^ ••• (L-,-loop) , v/o

check the value of p for all possible terms of the form

C2 Cl"C?
Yg = f is (a)) in the following order: c = c ,c -1, .. .,1,0(L -loop) .

However, no schema in (3(R) can solve the witch-hunt problem.

Intuitively, the reason is that no schema in C^R) can compute all

terms of the form f (g (a)) , in any order. For suppose there is a

schema S in (3(R) that solves the witch-hunt problem. Then, without

loss of generality we can assume that S haa no predicate other than p ,

and that defined functions in S have no boolean arguments. Let n

be the largest number of arguments of any defined function in S.

Consider an interpretation I, for which the predicate p is true true

for all terms. We also require that distinct terms yield distinct data

elements under ^x.rne > and we claim that S cannot generate all the

terms on the n+1 columns described in Figure h .

The .j-th column, 0 < j < n , consists of all terms f (g^(a)) for

all i > 0 . To show this, we divide all terms into 2n+3 sots A. , B , C
3 i

21

^^mä mä

0 A.

g(a)

B.
0

g2(a)

B,

f(a) f(g(a))

f2(a) f2(g(a))

f5(a) f3(g(a))

A a) fNg(a))

f(g2(a))

f2(g2(a))

f3(g2(a))

f,+ (R2(a))

gn(a) all other

terms

Bn

f(gn(a))

f2(gn(a))

f5(gn(a))

f\gn(a))

Figure k

for 0 < j < n . The set A, consists of the single term gJ(a) ,

the set Bj consists of the entire column of terms f^g^a))

for i > 0 , and the set C is the "catch all" consisting

of all other terms. Now, as the schema S must loop on the interpreta-

^ic"1 Itrue ' anci there are only finitely many sets, there must be some

defined function Fk that calls itself recursively such that each one

of its argmments is in the same set as in the earlier call. Then, as

the predicate tests are always true, the defined functions called

between such two calls of P are repeated in the same order, and with

the arguments from the same sets as before. Hence, there is at least

one column, say j , such that no argument of these calls of F is

from it. Therefore only finitely many terras from column j can be

22

'

- - t m t

reached during the computation, i.e., there is at least one term, say

il jl
f (g (a)) * that is never test-jd.

Now we chfnge the interpretation I. slightly to I „+ ro fpug

in which p applied to all terms is true except that p(f (g (a)))

is false. Then the computation f G on the interpretation ^ot sc true

is the came as the computatic. r I, > i-e«, S will loop on

I . But as Ü is assumed to solve the witch-hunt problem, not so true
ll •il it must halt with output f (g (a)) -- a contradiction. This proves

that no schema in CiR) can solve the witch-hunt problem.

It is interesting to rote, however, that the witch-hunt problem

can indeed by solved by some Algol-like Schemas with equality and no

counters, i.e., by Schemas in (U~) {see Chandra [197^]) •

5. Number of Variables and Depth of Data Terms

One can investigate further the effect of the number of data

variables on the power of Schemas. It can be shown, for example, that

*/ for every n , n > 0 :-'

(a) '3(R, n var) > (3(n var)

(b) C^R, 1 var) ^ C^n var)

(e) <3(R, n var) ^ 3(n+l var)

This implies the relations shovm in Figure 5« Recall that if there is

an ascending arc leading from any class (3-, to another class (J-

^l"v it means that fls -<

•****I~'M<W*

Here, " n var " indicates that the schema has at moi;t n data
variables (in Algol-like Schemas) or at most n data arguments
for defined functions (in recursive Schemas).

23

aA>_tB_^M*i

Simple Algol-like 3

(no. of variables)

2

Recursive

(no. of variables)

0 var

Figure 5

(a) The result that ^(R, n var) > £(n var) follows by the standard

process of translating a simple Algol-like sehen.i into an equivalent

recursive schema. (b) The recursive schema B. above is in

C-(H, 1 var) , but there is no schema in -^(n var) , for any n > 0 ,

which la equivalent to Z1 . (a) lo show that there ie a cchemu jn

C{n+1 var) which is not equivalent to any schema in fl^R, n var) we

consider the following problem.

"Find an element x of the form f^g^x)) , i > 0 and j < n ,

such that p(x) is false." We refer to this problem as the restricted

witch-hunt problem. The following schema S. in &(n+l var) solves the

problem.

2k

mm*

S,: START(a);

y2 - ßiy^; y;- - g(y2); • • •; yn+1 - g(yn);

L: if -, p(y1) then HALTCy^ else y1 - f (y^ ;

11 -i P(y2) then HALT(y2) el£e y2 - f(y^);

if -, p(yn+1) then HAlT(yn+1) else yn+1 - f (y^);

goto L

I Our earlier proof shows, however, that there is no schema in (3(R, n var)

which solves the problem, and therefore there iu no schema in (3(R, n var)

which is equivalent to S .

i There is no need to investigate how the number of boolean variables

affectJ.the power of the Schemas, since it can be shown that boolean

variables do not add any inherent power to Algol-like Schemas or to

recursive Schemas (with or without equality).-'

We can further consider how the depth of data terms affects the

power of schemas. The depth |T| of a data term T is defined as

follows: |a.| =0, [yj =0, and | f. (T^ .. .,Tn) | = 1 + ma/^ l^j, .. ITJ]

Trivially,—' c(o var, Ü depth) = C,(n var, 0 depth) < C(0 var, 1 depth)

for all n . It can be shown that for every n > 0 and d > 0 , we

have:

(a) £(n var, d+1 depth) £ e.(n+l var, 1 depth) , and

(b) 2(n+l var, d depth) £ (3(0 var, d+1 depth) .

*r Note, however, that owing to the particular way we introduce
pushdown stacks, queues and arrays, at least one boolean variable
is required to make use of these features.

— Here " d depth " indicates that the schemas use data terms of depth
at most d .

25

mmk

•^■^

These results imply the relations described in Pißure 6. Note that the

figure indicates, for example, that CO var, 8 depth) and

0(2 var, 3 depth) are unrelated.

(a) The first result can be proved by using the restricted witch-hunt

problem.

(b) The second result can be proved by observing that the following

schema S^ in -3(0 var, d+1 depth) is not equivalent to any

schema in (3(n+l var, d depth) :

SjJ START(a);

HALT(f(fJ(a),f^(a),...,f^2(a))) ,

„d,
where f. (a) means f^ applied d limes to the constant a

n var d depth

0 depth

Figure 6

26

- *^^^mtk mä

h. Discussion

It is reasonable to ask what it is about the various features

we have discussed that makes one class of Schemas more powerful than

another. An observation of the arciunents involved in proving the

interrelationships shown in Figures 1 and 2 suggest three intuitive

factors that determine the power of the various features.

(a) The amount of data space (x-axis of Figure 2 -- "add a stack

and delete a counter"). Simple Algol-like Schemas, and even those

with counters and equality, have a fixed amount of data space. This

limitation is shown by the fact that these Schemas just cannot compute

certain terms which are too large. The additions of a data variable

to simple Algol-like Schemas increases the power, as may be expected.

Recursive schemas act as if they had an unbounded amount of data space

available to them, as do schemas with stacks, queues or arrays.

(b) The control capability (y-axis of Figure 2 -- "add a counter").

The control capability of a schema signifies the ability of the schema

to decide what to do next. Boolean variables and counters are examples

of features that help in making such decisions. Boolean variables

however add no inherent power, while- two counters add as much control

power as one might want. A pushdown stack provides, in addition to an

unlimited amount of data space, some control capability because a stack

can simulate a counter, but it does not have as much control capability

as two counters. A queue, on the other hand, provides in addition to

unlimited data space, as much control capability as two counters.

2?

■

 - — .. ^- . MMMflM

One can also consider other progranuning features that provide

control capability. One such example is the boolean stack-^ which is a

pushdown stack consisting entirely of booJean values (see also Green,

Eispas and Levitt [l1;?!]) .

(c) The structure of terms (z-axis of Figure 2 - "add equality") .

In our discussion we observed that the addition of terras containing

equality increases the power of scheraas. This illustrates that if we

enrich the structure of terms allowed we may increase the power of

Schemas. On the other hand, if we restrict the structure of terras,

such as by limiting the depth of data terms, we may decrease the power.

*r A boolean stack is strictly more powerful than one counter but
strictly less powerful than a pushdown stack or two counters. Two
boolean stacks, however, are just as powerful as two counters (as
is also one boolean queue) .

28

-

'

! »

References

CHANDRA [1975]• A. K. Chandra, "On the properties and applications

of propi-ain Schemas," Ph.D. Thesis, Computer Science [)npt.,

Stanford University, Report No. CS-v'/), Al-.1.88 (February 197.;') •

CHANDRA and MANNA [1972]. A. K. Chandra and Z. Manna, "Program Schemas

with equality," in Proceedings of the Fourth Annual ACM Symposium

on the Theory of Computing, Denver, Colorado, (May 1972), pp. 52-6^.

CONSTABLE and GRIES [1972]. R. L. Constable and D. Gries, "On classes

of program schemata," SIAM Journal on Computing, Vol. 1, No. 1

(March 1972), pp. 66-118.

GARLAND and LUCKHAM [1971]. S. J. Garland and D. C. Luckhajn, "Program

schemes, recursion schemes, and formal languages," UCLA report.

No. ENG-715!i. (June 1971).

GREEN, ELSPAS and LEVITT [1971]. M. W. Green, B. Elspas and K. N. Levitt,

"Translation of recursive schemas into label-stack flowchart schemas,"

preliminary draft, Stanford Research Institute, Menlo Park, California,

(June 1971).

HEWITT [1970]. C. Hewitt, "More comparative schematology," Artificial

Intelligence Memo No. 207, Project Mac, M.I.T., Cambridge, Mass.,

(August 1970).

LUCKHAM, PARK and PATERSON [1970]. D. C. Luckham, D. M. R. Park and

M. S. Paterson, "On formalized computer programs," Journal of

Computer and Systems Science, Vol. h, No. 5, (Juno 1970), pp. 220-2^9.

MCCARTHY [I962J. J. McCarthy, "Towards a mathematical science of

computation," Proc. IFIP, I962, pp. 21-lk.

PATERSON and HEWITT [1970]. M. S. Paterson and C. E. Hewitt, "Comparative

schematology," in Record of Project MAC Conference on concurrent

systems and parallel computation, ACM, New York, (December 1970),

pp. II9-I28.

PLAISTED [1972]. D. Plaisted, "Program schemas with counters,"

Proceedings of the Fourth Annual ACM Symposium on the Theory of

Computing, Denver, Colorado (May 1972), pp. hh-51.

STRONG [1971]. H. R. Strong, Jr., "Translating recursion equations into

flowcharts," Journal of Computer and System Sciences, Vol. 5, No. i,

(June 1971). PP. 25^-285.
29

^_ -- -- - - . ^m*

